Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing
نویسندگان
چکیده
A new method to integrate poly-DL-lactide (PLA) patterned electrospun fibers with a polydimethylsiloxane (PDMS) microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP). In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.
منابع مشابه
Microfluidic DNA extraction using a patterned aluminum oxide membrane
A DNA extraction system was designed and fabricated using an AOM (aluminum oxide membrane) with 200 nm pores and PDMS microfluidic channels. The membrane was patterned using soft lithography techniques and SU-8 photolithography on the membrane. After making the pattern with SU-8, the AOM was observed using an SEM (scanning electro microscope) to verify the AOM structure was not damaged. From th...
متن کاملStretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates
We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, ...
متن کاملObservation Interface of PDMS Membrane in a Microfluidic Chip Based on One-Step Molding
Nowadays, researchers are focusing on sorting, characterizing and detecting micron or submicron particles or bacteria in microfluidic chips. However, some contradictions hinder the applications of conventional microfluidic chips, including the low working distance of high resolving power microscopy and the low light transmittance of conventional microfluidic chips. In this paper, a rapid and re...
متن کاملA simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer
We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of to...
متن کاملConstruction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the conta...
متن کامل